

EN 2024 06

CuSn2Fe0.1

Comparable standards:	UNS C50715
Aurubis designations:	KLF5* • PNA 328

Description

CuSn2Fe0.1 is a solid solution and precipitation strengthened copper alloy (bronze). This alloy has good corrosion resistance, very good cold workability and good electrical conductivity of min. 30% IACS.

Due to the Fe-P precipitates the alloy has high strength and good relaxation behaviour, thus it can be used at elevated temperatures and where high strength in combination with conductivity is required.

Composition

Cu	Sn	Fe	Р	Pb
[%]	[%]	[%]	[%]	[%]
rem	1.7-2.3	0.05-0.15	0.025-0.04	0.02 max

Composition of this alloy is in accordance with RoHS for electric & electronic components and ELV for the automotive industry.

Physical properties

Mechanical properties

Melting point	Density	с _р @ 20°С	Young's modulus	Thermal cond.	Elec co	trical nd.	α @20-300°C
[°C]	[g/cm³]	[kJ/kgK]	[GPa]	[W/mK]	[MS/m]	[%IACS]	[10 ⁻⁶ /K]
1060	8.9	0.38	121	140	≥ 18	≥31	17.7
Noto: The speci		c., specific l	neat capacity	1			

Note: The specified conductivity applies to the soft condition only.

 α coefficient of thermal expansion

	Tensile Strength	Yield Strength	Elongation A ₅₀	Hardness HV	Bend 90°	ratio [r]	Bend 180	ratio ° [r]
	[MPa]	[MPa]	[%]	[-]	GW	BW	GW	BW
R390	395-500	290-415	≥ 16	120-140	0	0	0	0
R510	515-600	440-545	≥ 6	150-180	0	0	0	1
R550	555-625	490-570	≥5	165-185	0	0	0	1.5
R600	605-665	550-625	≥ 3	180-200	0	0	0	2.5

r = x * t (thickness $t \le 0.5 mm$)

GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction.

Fabrication	
properties	

Cold formability	excellent
Hot formability	fair
Soldering	excellent
Brazing	excellent
Oxyacetylene welding	fair
Gas shielded arc welding	good
Resistance welding	good
Machinability	not recommended

Electrical conductivity

The electrical conductivity depends on chemical composition, the level of cold deformation and the grain size. A high level of deformation as well as a small grain size decrease the conductivity.

Corrosion Resistance

Behaviour

CuSn2Fe0.1 is resistant to: Natural and industrial atmospheres as well as maritime air, drinking and service water, non oxidizing acids, alkaline solutions and neutral saline solutions. CuSn2Fe0.1 is not resistant to: Ammonia, halogenide, cyanide and hydrogen sulfide solutions and atmospheres, oxidizing acids and sea water (especially at high flow rates). CuSn2Fe0.1 is resistant to pitting corrosion, even in sea water.

Stress relaxation data shown as residual stress against Larson Miller Parameter. The Larson Miller Parameter represents temperature and time. Test method: Mandrel test according to ASTM E328.

This leaflet is for general information only and is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The data given are no warranty that the product is of a specified quality and they cannot replace expert advice or the customer's own test.