BlueBrass® is a brass alloy with approximately 42% zinc which offers good mechanical properties combined with good machinability, due to its unique combination of alloy composition and microstructure. Moreover the material has very good hot- and cold formability which opens up new possibilities for component manufacturing. PNA 379 has been optimized with the addition of indium for mechanical processing in complex machining processes. With its increased In content, this alloy is particularly suitable for dry machining.

PNA 379 has a very low lead content making the alloy suitable for jewelry applications according to REACH standards.

Fields of application are the watch industry, jewelry, automotive as well as components for electrical and mechanical engineering.

Composition

<table>
<thead>
<tr>
<th>Cu</th>
<th>Pb</th>
<th>In</th>
<th>Fe</th>
<th>Ni</th>
<th>Sn</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
<td>[%]</td>
</tr>
<tr>
<td>57.0-58.5</td>
<td>< 0.01</td>
<td>0.1-0.3</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>rem.</td>
</tr>
</tbody>
</table>

Composition of this alloy is in accordance with RoHS for electric & electronic components and ELV for the automotive industry.

Physical properties

<table>
<thead>
<tr>
<th>Melting point</th>
<th>Density</th>
<th>c_p @ 20°C</th>
<th>Young's modulus</th>
<th>Thermal cond.</th>
<th>Electrical cond.</th>
<th>α @20-300°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>[g/cm³]</td>
<td>[kJ/kgK]</td>
<td>[GPa]</td>
<td>[W/mK]</td>
<td>[MS/m]</td>
<td>[%IACS]</td>
</tr>
<tr>
<td>900</td>
<td>8.4</td>
<td>0.377</td>
<td>105</td>
<td>113</td>
<td>≥ 14.6</td>
<td>≥ 25</td>
</tr>
</tbody>
</table>

Note: The specified conductivity applies to the soft condition only.

c_p specific heat capacity
α coefficient of thermal expansion

Mechanical properties

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Tensile Strength</th>
<th>Yield Strength</th>
<th>Elongation</th>
<th>Hardness HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[MPa]</td>
<td>[MPa]</td>
<td>[%]</td>
<td>[-]</td>
</tr>
<tr>
<td>H160</td>
<td>520-600</td>
<td>≥400</td>
<td>≥15</td>
<td>160-180</td>
</tr>
<tr>
<td>H170</td>
<td>550-630</td>
<td>≥300</td>
<td>≥10</td>
<td>170-190</td>
</tr>
</tbody>
</table>

Other tempers are available upon request.

Fabrication properties

- **Machinability**: good
- **Cold formability**: fair
- **Hot formability**: excellent
- **Resistance welding**: good
- **Oxyacetylene welding**: fair
- **Inert gas shield arc welding**: fair
- **Brazing**: excellent
- **Soldering**: excellent
Material Datasheet CuZn42In0.2Pb0.01 BlueBrass®

Electrical conductivity

The electrical conductivity depends on chemical composition, the level of cold deformation and the grain size. A high level of deformation as well as a small grain size decrease the conductivity.

Corrosion Resistance

Brass is resistant to: Natural, industrial and salt bearing atmospheres, drinking water, alkaline and neutral saline solutions.

Brass is not resistant to: Acids, ammonia, halogenide, cyanide and hydrogen sulfide solutions and atmospheres as well as sea water (especially at high flow rates).

Under certain circumstances (high Cu-content and low carbon-hardness) dezincification can be an issue with CuZn42. The alloy also has a certain sensitivity to stress corrosion cracking when exposed to certain environments (e.g. ammonia, amine or sal ammoniac). The alloy should be stress relieved if stress corrosion cracking might be an issue.

The stress cracking corrosion resistance (inspected in accordance with EN 14977:2006) and the dezincification resistance (inspected in accordance with DIN EN ISO 6509:1995) are comparable to those of conventional CuZn39Pb3.

Typical uses

Jewelry articles, machined parts of any kind, components for electrical and mechanical engineering, connector pins, screws, clamps

This leaflet is for general information only and is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The data given are no warranty that the product is of a specified quality and they cannot replace expert advice or the customer's own test.