

CuNiSi EN_2024_03

Comparable standards: UNS C19005 Aurubis designations: • PNA 326

Description

PNA 326 is an optimized version of CuNi1.5Si, which is a precipitation-hardened copper alloy. It combines medium electrical conductivity (min. 47% IACS) with high strength and good relaxation behaviour. This is achieved by the application of a special process consisting of cold working and heat treatment. It also has excellent spring properties and good corrosion resistance.

Fields of application are automotive, connectors, leadframes and electrical engineering.

Composition

Cu	Ni	Si	Zn	Sn	Р
[%]	[%]	[%]	[%]	[%]	[%]
rem	1.4-1.7	0.2-0.35	0.2-0.7	0.02-0.3	0.01-0.03

Composition of this alloy is in accordance with RoHS for electric & electronic components and ELV for the automotive industry.

Physical properties

Melting point	Density	с _р @ 20°С	Young's modulus	Thermal cond.	Electrical cond.		α @20-300°C	
[°C]	[g/cm³]	[kJ/kgK]	[GPa]	[W/mK]	[MS/m]	[%IACS]	[10 ⁻⁶ /K]	
1062	8.9	0.377	135	250	≥ 27	≥47	16.8	

cp specific heat capacity

 $\boldsymbol{\alpha}$ coefficient of thermal expansion

Mechanical properties

	Tensile Strength	Yield Strength	Elongation A ₅₀	Hardness HV	Bend ratio 90° [r]		Bend ratio 180° [r]	
	[MPa]	[MPa]	[%]	[-]	GW	BW	GW	BW
R360	360-430	≥275	≥ 8	100-130	0	0	0	0.5
R410	410-470	≥370	≥ 7	120-140	0	0.5	0.5	1
R460	460-520	≥410	≥ 5	140-160	0.5	1	1	3
R490	490-560	≥435	≥ 4	150-170	1	1.5	2	3.5
R520	520-590	≥460	≥ 3	155-180	1	2	2.5	4
R490S*	490-560	≥410	≥ 10	150-170	0	0	1	1
R520S*	520-590	≥440	≥ 8	155-180	0.5	0	1.5	1.5
R580S*	580-650	≥510	≥ 7	170-200	0.5	0.5	1.5	2
R620S	620-700	≥560	≥ 6	180-210	1	1.5	3	5

 $r = x * t \text{ (thickness } t \le 0.5 mm)$

GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction

aurubis.com/stolberg 1 - 2

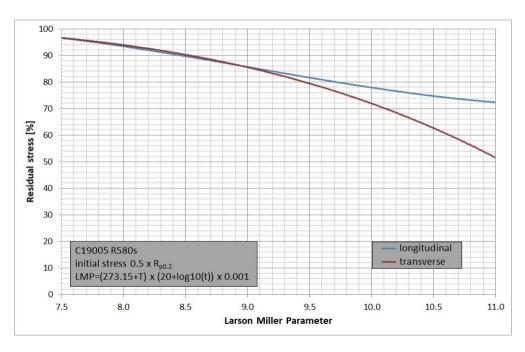
Fabrication properties

Cold formability	good
Hot formability	excellent
Soldering	good
Brazing	good
Oxyacetylene welding	good
Gas shielded arc welding	good
Resistance welding	good
Machinability	fair

Electrical conductivity

The electrical conductivity depends on chemical composition, the level of cold deformation and the grain size. A high level of deformation as well as a small grain size decrease the conductivity.

Corrosion Resistance


CuNiSi is resistant to: Natural and industrial atmospheres as well as maritime air, drinking and service water, non oxidizing acids, alkaline solutions and neutral saline solutions.

CuNiSi is not resistant to: Ammonia, halogenide, cyanide and hydrogen sulfide solutions and atmospheres, oxidizing acids and sea water (especially at high flow rates).

Typical uses

Automotive, components of electrical engineering, connectors, springs, relays, sockets, clips, leadframes, pins

Relaxation Behaviour

Stress relaxation data shown as residual stress against Larson Miller Parameter. The Larson Miller Parameter represents temperature and time.

Test method: Mandrel test according to ASTM E328.

This leaflet is for general information only and is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The data given are no warranty that the product is of a specified quality and they cannot replace expert advice or the customer's own test.

aurubis.com/stolberg 2 - 2