

CuMg0.1

Comparable standards: UNS C15500 • JIS C1550
Aurubis designations: C155 • C155 • PNA 297

Description

CuMg0.1 is an alloy hardened by the addition of magnesium. It shows increased strength and very good electrical conductivity (min. 86% IACS). Magnesium increases the wear resistance of copper, as well as the thermal stability and relaxation properties.

Fields of application are components of electrical engineering, connectors and leadframes.

Composition

Cu	Mg	Р	Ag	
[%]	[%]	[%]	[%]	
min 99.75	0.08-0.13	0.04-0.08	0.027-0.1	

Composition of this alloy is in accordance with RoHS for electric & electronic components and ELV for the automotive industry.

Physical properties

Melting point	Density	с _р @ 20°С	Young's modulus	Thermal cond.		Electrical cond. @20	
[°C]	[g/cm³]	[kJ/kgK]	[GPa]	[W/mK]	[MS/m]	[%IACS]	[10 ⁻⁶ /K]
1082	8.91	0.394	117	≥340	≥ 50	≥86	17.6

Note: The specified conductivity applies to the soft condition only.

c_p specific heat capacity α coefficient of thermal expansion

Mechanical properties

	Tensile Strength	Yield Strength	Elongation A ₅₀	Hardness HV	Bend ratio 90° [r]		Bend ratio 180° [r]	
	[MPa]	[MPa]	[%]	[-]	GW	BW	GW	BW
R235	235-300	≥105	≥30	-	0	0	0	0
R300	300-360	≥250	≥ 28	90-125	0	0	0	0.5
R360	360-420	≥320	≥ 13	120-140	0	0.5	1	2
R420	420-460	≥380	≥ 5	130-150	0.5	1	2	2.5
R460	≥460	≥420	≥ 3	≥140	1	2	3	5

r = x * t (thickness t ≤ 0.5mm)

GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction.

Fabrication properties

Cold formability	excellent
Hot formability	excellent
Soldering	excellent
Brazing	excellent
Oxyacetylene welding	not recommended
Gas shielded arc welding	not recommended
Resistance welding	fair
Machinability	not recommended

Electrical conductivity

The electrical conductivity depends on chemical composition, the level of cold deformation and the grain size. A high level of deformation as well as a small grain size decrease the conductivity.

aurubis.com/stolberg 1 - 2

Corrosion Resistance

CuMg0.1 is resistant to: Natural and industrial atmospheres as well as maritime air, drinking and service water, non oxidizing acids, alkaline solutions and neutral saline solutions.

CuMg0.1 is not resistant to: Ammonia, halogenide, cyanide and hydrogen sulfide solutions and

atmospheres, oxidizing acids and sea water (especially at high flow rates).

Typical uses

Components of electrical engineering, connectors, lead frames

This leaflet is for general information only and is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The data given are no warranty that the product is of a specified quality and they cannot replace expert advice or the customer's own test.

aurubis.com/stolberg 2 - 2