

EN 2024 03

CuZn0.5

Comparable standards: Aurubis designations:

• EN CW119C • PNA 218

Description

CuZn0.5 is a copper alloy deoxidized by the addition of zinc. The alloy has good electrical conductivity (min. 82% IACS) and an improved strength, compared to pure copper. The alloy has very good welding and soldering properties because it is largely insensitive to hydrogen embrittlement.

Fields of application are metal ware, components of electrical engineering, architecture and apparatus engineering.

Composition

Cu	Zn	Р
[%]	[%]	[%]
rem	0.1-1.0	0.02 max

Composition of this alloy is in accordance with RoHS for electric & electronic components and ELV for the automotive industry.

Physical properties

Mechanical properties

point		@ 20°C	modulus	cond.	CO	nd.	@20-300°C
[°C]	[g/cm ³]	[kJ/kgK]	[GPa]	[W/mK]	[MS/m]	[%IACS]	[10 ⁻⁶ /K]
1081	8.92	0.386	127	350	≥ 48	≥83	17.7

Note: The specified conductivity applies to the soft condition only.

c_n specific heat capacity

 α coefficient of thermal expansion

	Tensile Strength	Yield Strength	Elongation A ₅₀	Hardness HV	Bend 90°	ratio [r]
	[MPa]	[MPa]	[%]	[-]	GW	BW
R220	220-260	≤ 140	≥ 33	40-65	0	0
R240	240-300	≥ 180	≥ 8	65-95	0	0
R290	290-360	≥ 250	≥ 4	85-115	0	0
R360	≥ 360	≥ 320	≥ 3	≥ 110	0.5	1

r = x * t (thickness $t \le 0.5 mm$)

GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction.

Fabrication	Cold formability	excellent
properties	Hot formability	excellent
	Soldering	excellent
	Brazing	good
	Oxyacetylene welding	fair
	Gas shielded arc welding	good
	Resistance welding	not recommended
	Machinability	not recommended

Electrical conductivity The electrical conductivity depends on chemical composition, the level of cold deformation and the grain size. A high level of deformation as well as a small grain size decrease the conductivity.

CorrosionCopper is resistant to: Natural and industrial atmospheres as well as maritime air, drinking and
service water, non oxidizing acids, alkaline solutions and neutral saline solutions.
Copper is not resistant to: Ammonia, halogenide, cyanide and hydrogen sulfide solutions and
atmospheres, oxidizing acids and sea water (especially at high flow rates).

Typical uses Components of electrical engineering, architecture, apparatus engineering, metal ware

This leaflet is for general information only and is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The data given are no warranty that the product is of a specified quality and they cannot replace expert advice or the customer's own test.