

CuSn6 DE_2024_06

Vergleichbare Standards: UNS C51900 • EN CW452K • JIS C5191

Aurubis-Bezeichnungen: C519 • PNA 282

Beschreibung

CuSn6 ist eine mit 6% Zinn mischkristallverfestigte Kupferlegierung (Bronze). Sie zeichnet sich durch hohe Festigkeits- und gute Federeigenschaften bei hinreichender Leitfähigkeit aus und eignet sich für die Kaltumformung. Die Legierung ist verschleißfest, hat eine sehr gute Korrosionsbeständigkeit und lässt sich gut löten.

Zusammensetzung

Cu	Sn	Р	Zn	Fe	Ni	Pb	
[%]	[%]	[%]	[%]	[%]	[%]	[%]	
rem	5,5-7,0	0,01-0,4	max 0,2	0,1 max	0,2 max	0,02 max	

Diese Legierung entspricht ihrer Zusammensetzung den Vorgaben gemäß RoHS für elektrische und elektronische Bauteile sowie der ELV für die Automobilindustrie.

Physikalische Eigenschaften

Schmelz- punkt	Dichte	с _р @ 20°С	E-Modul	Wärme- Leitfähigkeit		rische higkeit	α @20-300°C	
[°C]	[g/cm³]	[kJ/kgK]	[GPa]	[W/mK]	[MS/m]	[%IACS]	[10 ⁻⁶ /K]	
1040	8,8	0,377	118	75	≥ 9	≥16	18,5	

Die angegebene Leitfähigkeit ist nur für den weichen Zustand gültig.

 c_p spezifische Wärmekapazität α Wärmeausdehnungskoeffizient

Mechanische Eigenschaften

	R _m Zugfestigkeit	R _{p0.2} Streckgrenze	Dehnung A ₅₀	Härte HV	Biegeradius 90° [r]		Biegeradius 180° [r]	
	[MPa]	[MPa]	[%]	[-]	GW	BW	GW	BW
R350	350-420	≤ 300	≥ 45	80-110	0	0	0	0
R420	420-520	≥ 360	≥ 17	125-165	0	0	0	0
R500	500-590	≥ 460	≥ 8	160-190	0	0	1	2
R560	560-650	≥ 530	≥ 5	180-210	0,5	1	2	3
R640	640-730	≥ 610	≥ 3	200-230	1	3,5	3	4
R720	≥ 720	≥ 690	-	≥ 220	-	-	-	-

r = x * t (Dicke t ≤ 0.5mm)

GW Biegeachse senkrecht zur Walzrichtung. BW Biegeachse parallel zur Walzrichtung.

Fertigungseigenschaften

Kaltverformbarkeit	hervorragend
Warmverformbarkeit	nicht zu empfehlen
Weichlöten	hervorragend
Hartlöten	hervorragend
Autogenes Schweißen	ausreichend
Schutzgasschweißen	gut
Widerstandsschweißen	gut
Zerspanbarkeit	nicht zu empfehlen

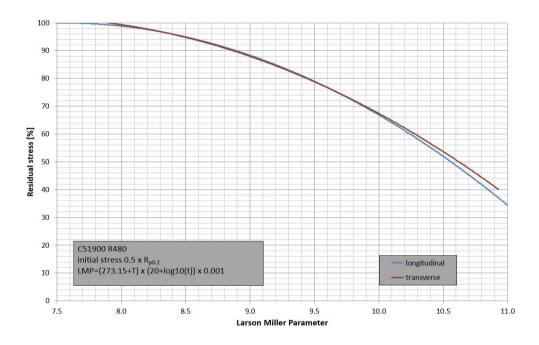
aurubis.com/stolberg 1 - 2

Elektrische Leitfähigkeit

Die elektrische Leitfähigkeit wird von der chemischen Zusammensetzung, der Kaltverformung sowie der Korngröße beeinflusst. Ein hohes Maß an Verformung und eine geringe Korngröße vermindern die elektrische Leitfähigkeit.

Korrosionsbeständigkeit

Bronze ist beständig gegen: Natürliche und industrielle Atmosphäre sowie Meeresluft, Trinkund Gebrauchswasser (wenn die Strömungsgeschwindigkeit nicht zu hoch ist), Seewasser, nicht oxidierende Säuren, alkalische und neutrale Salz haltige Lösungen.


Bronze ist nicht beständig gegen: Ammoniak, Halogenid, Cyanid und Schwefelwasserstoff haltige Lösungen und Dämpfe, oxidierende Säuren.

Bronzewerkstoffe haben eine verbesserte Beständigkeit gegen Seewasser und Lochfraßkorrosion.

Verwendung

Automotive, Bauteile der Elektrotechnik, Steckverbinder, Relais, Federkontakte, Federn, Metallschläuche, Buchsen, Papier-, Textil- und chemische Industrie sowie der allgemeine Maschinenbau.

Relaxationsverhalten

Die vorstehenden Angaben sind allgemeine technische Produktinformationen und stellen weder zugesicherte Eigenschaften noch Beschaffenheitsgarantien im Rechtssinne dar. Verbindliche Spezifizierungen bleiben einem späteren Vertragsschluss vorbehalten. Dieses Datenblatt unterliegt keinem Änderungsdienst.

aurubis.com/stolberg 2 - 2